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Abstract

Healthcare waste management is vital for protecting public health and the environment, yet traditional methods often fall short in handling
increasing waste volumes. This study investigates how artificial intelligence can transform Healthcare waste management to enhance
efficiency. Through a literature review of 58 papers, 21 challenges and 12 enablers were identified. Using Multi-Criteria Decision-Making
Techniques—TOPSIS and DEMATEL—the study prioritized these factors and analysed their interrelationships. Key challenges include
inadequate procurement and inventory management, lack of supply chain transparency, and poor logistics optimization. Critical enablers are
real-time monitoring, loT-based sensors, cloud platforms, and data analytics, which support smarter, more sustainable waste handling. The
findings highlight that successfully implementing Al requires overcoming technical, organizational, and regulatory barriers while leveraging
key technologies. This study provides valuable insights for healthcare administrators and policymakers aiming to modernize Healthcare waste
management systems, offering a roadmap for safer, more efficient, andresilient Healthcare waste management through Al integration.

1. INTRODUCTION

The way the environment can maintain itself, how public health can
be looked after, and what can be done for it to continue operating
effectively depend on efficient waste management in healthcare.
Often, traditional practices are unable to cope with the increasing
amounts of refuse generated by health care facilities, which may
lead to environmental pollution and endanger human lives. This
research study looks at how transportation and disposal methods
can be improved using artificial intelligence (Al) in transforming
healthcare waste management (HCWM). Public health and
environmental protection necessitate that HCWM be considered
important. All wastes produced by medical activities in hospitals,
research institutions, and laboratories are referred to as healthcare
waste by the World Health Organization (WHO) (WHO, 2018). To
prevent the potential risks of disease spread and pollution of the
environment, like infection control, proper health care waste
management is a critical requirement (Townend & Cheeseman,
2005).

HCWM is the systematic handling of healthcare waste generated
within healthcare facilities for environmentally safe disposal. This
comprises different types of wastes such as chemical,
pharmaceuticals, sharps, infectious, and pathological wastes
(Chartier, 2014) (Figures 1 and 2). Effective procedures are
necessary to minimize risks to patient health, healthcare workers’
safety, and community members in general.

Figure 1. Solid Healthcare Waste

Figure 2. Liquid Healthcare Waste

Traditional (HCWM)is collection, segregation, transportation,
treatment and disposal. These are manual, labor-intensive, and
prone to inefficiencies (Alagoz & Kocasoy, 2008). With the
increasing volume of healthcare waste due to population growth
and advancement in medical technology (Patwary et al., 2011)
waste management systems are facing challenges.

Al is a game-changing technology that can help in waste
management in many ways. Al tools that can help in decision
making, increase operational efficiency, and reduce cost are
machine learning, predictive analytics, and optimization
algorithms (Nguyen). Al can offer smart solutions for waste
management in the healthcare industry, including automating the
waste segregation process, predicting waste generation patterns,
and optimizing waste collection routes.

2. LITERATURE REVIEW

HCWM is the methodical processing of waste produced in
healthcare organizations. The goal is to guarantee ecologically
responsible and safe disposal. This covers a broad spectrum of
waste categories. These include chemical, pharmaceutical, sharps,
infectious, and pathological waste (Chartier, 2014). Effective
management procedures are essential to reduce hazards to the
health of patients. It also protects healthcare providers and the
general public. HCWM is a multi-step process. It includes
collection and transportation (Figure 3) Storage treatment and
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disposal. Strict regulatory criteria must be followed for each of
these procedures to guarantee compliance and safety (Fatta-
Kassinos, 2010). To avoid the mixing of hazardous and non-
hazardous waste, which can complicate the treatment process and
increase disposal costs, proper segregation at source is crucial
(Fang et al., 2023). Healthcare personnel's lack of awareness.
Limited infrastructure and inadequate training. Logistical
problems with waste transportation are the main obstacles in
HCWM (Patwary et al., 2011). Furthermore, the growing amount
of trash generated by healthcare due to population expansion and
technological improvements presents serious difficulties for waste
management systems (Mmereki etal., 2017).

Figure 3. Healthcare Waste Management Process

The term Al refers to a wide range of tools and methods. These
provide computers the capability to carry out tasks that ordinarily
call for human intelligence. Al has the potential to improve waste
management through numerous procedures. These include
predictive maintenance, Route optimization, Waste sorting (De
Lucaetal., 2021). Numerous research works have investigated the
use of Al in garbage management. In their study (Nguyen)
examined how machine learning optimization algorithms work.
Predictive analytics may be used by Al to increase waste
management efficiency. Similarly, (Lu & Chen, 2022) showed how
well Al-powered computer vision systems work. This helps to
automate the recycling material sorting process. The
implementation of Al in waste management has several benefits,
including operational efficiency, cost savings, and better decision
making (Figure 5).

Al technologies like computer vision, machine learning and natural

Figure 4. Al in Healthcare Waste Management

language processing are used more and more in waste management
to cut costs and increase efficiency. Machine learning algorithms
can forecast future waste volumes. This is done by analyzing
historical waste generation data (Nguyen) Better planning and
resource allocation are made possible. Automation using a
Computer vision system can reduce the need for human labor (Lu &
Chen, 2022). A few advantages of implementing Al are Enhanced
decision making, cutting costs, and increased operational
efficiency. Large data sets may be processed in real time by Al-
driven systems. This gives rise to insights that can be put into
practice. It allows waste management procedures to be dynamically
adjusted (Berk & Brown, 2020).

2.1 Challenges and Enablers of AI-Enabled Healthcare Waste
Management

Al and other cutting-edge technologies cannot be seamlessly
integrated into hospital waste management because of a number of
obstacles. These difficulties cover a variety of topics. These include
worries about data security and privacy. There are also difficulties
integrating new systems with the infrastructure that is still in place.
Moreover, the low level of digital proficiency among healthcare
workers hinders progress. Modernizing hospital waste
management is further complicated by interoperability problems,
opposition to change, and a lack of precise and trustworthy data. In
order to successfully apply Al-enabled solutions, it is crucial to
improve the effectiveness, security, and efficiency of these systems.
Sustainability of HCWM procedures is imperative. These issues
must be resolved. Table 1 shows challenges related to Al-enabled
HCWM systems.

Table 1: Challenges Related to the AI-Enabled Healthcare Waste Management System

S. No. | Challenge Name

Description

References

accuracy and
quality assurance

1 Lack of Data Protecting data related to patients' hazardous (Kandasamy et al., 2022;
Privacy and material and ensuring data security Wang et al., 2022)
Security measures.
2 Complexities in Ensuring seamless integration among digital (Tang et al., 2023)
integration technologies
3 Lack of Data Lack of data accuracy, reliability, and (Caniato et al., 2016; Lemma

completeness, including data entry errors,
duplication, and inconsistencies

et al., 2022)

Limited digital
skills

4 Interoperability Integration of digital tracking systems with (Ilyas et al., 2020; Zhao et al.,
with Legacy traditional approaches can lead to data 2021)
Systems inefficiencies.
5 Lack of digitally skilled workforce for (Mohamed et al., 2023)

effective analysis and interpreting waste
data for decision-making

6 Lack of integrating data from various

(Fitriani et al., 2022; Singh et

Analytics tools

Lack of Qata sources and systems to provide a al., 2022)
Iintegration . .
comprehensive view of waste management
7 Lack of It ensures that data analytics solutions are (Mazzei & Specchia, 2023;
scalability of scaled to accommodate increasing volumes Zamparas et al., 2019)

of waste data as healthcare facilities grow.
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8 Initial investment Higher investment costs to implement (Mohamed et al., 2023;
cost industrial automation and robotics Sharma & Sharma, 2019)
9 Resistance to Staff resistance to adopting this due to fear (Arun Kumar & Wang, 2021;
change of loss of jobs Riek, 2017)
10 Maintenance and . . (Vichitkraivin & Naenna,
. Lack of tools for proactive maintenance
repair 2021)
11 Safety (Bhubalan et al., 2022;
compliance and It ensures that automated systems are Voudrias, 2024)
Lack of Safety complying with safety standards and
focused regulations to protect workers from hazards.
technologies
12 Workforce Reengineering existing workflows to .ahgn (al-Sulbi et al., 2023)
. the system with an advanced robotics
redesign
system
13 Lack of Digital Lack of training for staff to operate safely (Mohamed et al., 2023; Wang
training and alongside automated systems and follow et al., 2022)
awareness safety protocols
14 Lack of safety Lack of safety procedures, risk assessments, (Brindha et al., 2020; Han et
documentation and incident reporting al., 2023)
15 Lack of Tlmc?ly There is a need for efficient scheduling and (Fan etal., 2016; Hammond et
waste collection .. . al., 2023)
. coordination to prevent waste buildup.
and disposal
16 Lack of (Aydin, 2021; Babaee
Procurement and | There is a need to ensure an adequate supply Tirkolaee & Aydin, 2021;
inventory of waste containers and equipment. Peng et al., 2020)
management
17 Lafk (.)f Transport It deals with reducing transportation costs (Emmanuel.& Stringer, 2007
ogistics and . ] Mahyadin et al., 2013)
route and carbon footprint through efficient
P routing.
optimization
18 Lack of Waste It helps to establish contracts and (He et al., 2016; Luo & Liao,
disposal facility partnerships with appropriate disposal 2022)
coordination facilities.
19 Lack of Supply It tracks waste movements and costs for (Camatq etal, 2016;
chain .. . Mastorakis et al., 2011)
better decision-making.
transparency
20 Lack of Energy- (Ahmad et al., 2021; Le et al.,
intensive waste 2022)
treatment There is a need for efficient scheduling and
approaches and L .
coordination to prevent waste buildup.
of energy
consumption
monitoring
21 Lack of Clean It deals with reducing transportation costs (Chisholm et al., 2021;
and green energy and carbon footprint through efficient Mazzei & Specchia, 2023)
adoption routing.

A number of enablers make it easier to implement an Al-enabled
HCWM system. These include the use of cloud-based platforms for
data storage and accessibility. IoT-based sensors and RFID
technology for real-time tracking and monitoring is essential.
Enhanced data analytics allow for preventive maintenance and
decision-making. Examples of these enablers include effective

HCWM system.

Table 2 Enablers Related to AI-Enabled Healthcare Waste Management System

resource allocation and inventory optimization systems.
Blockchain technology is also crucial for safe data storage. By
utilizing these enablers, HCWM may be made much more accurate,
efficient, and sustainable. This opens the door to new and useful
approaches. Table 2 shows enablers related to an Al-enabled

Enabler Name

Description

References

10T based
sensors and
RFID technology
adoption

IoT-based sensor and RFID technology adoption
helps to provide real-time information on waste
levels in the bins and optimize collection and

disposal schedules.

(Andeobu et al., 2022;
Giakoumakis et al.,
2021; Wawale et al.,
2022)

Waste to energy
solutions

Adopting these solutions, i.e., Thermal

Depolymerization and anaerobic Digestion of

Organic Waste, helps to convert waste into

energy, which contributes towards renewable

energy production.

(Nolz et al., 2011)
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3 Waste Digital tools for waste segregation and (Bujak, 2009; Chen et
Segregation and categorization al., 2022)
Categorization
Technologies
4 Cloud-based It stores the waste management data, enabling (Rahayu et al., 2021;
platforms efficient collaboration and remote access. Sahni et al., 2018)
5 Remote It uses sensors and automation to manage waste (Akila et al., 2021;
monitoring, Real- collection and disposal Bucataru et al., 2021;
time tracking and Chisholm et al., 2021)
control
6 Inventory It ensures efficient management of waste and (Erdebilli & Devrim-
optimization equipment ictenbas, 2022)
systems
7 Efficient resource Better allocation of resources, i.e., staff, (Patwary et al., 2011;
allocation containers, and disposal facilities Perry et al., 2012)
8 Ensuring long- Fostering long-term sustainability initiatives to (Aseweh Abor &
term ensure cost reduction and attract revenues Bouwer, 2008)
sustainability
9 Data analytics Use these approaches to reduce operational (Mohamed et al., 2023;
and predictive disruptions in waste management. Wawale et al., 2022)
maintenance
10 Blockchain Secure patient and waste management data and (DRAGAN, 2019)
technology for ensure data privacy
data security
11 Emergency Digital system for quick responses in waste (Le et al., 2022; Wang ct
response system management emergencies al., 2022)
12 Compliance Use of digital tools for compliance monitoring (Yang et al., 2021; Zhao
monitoring and automation et al., 2021)
reporting
3. METHODOLOGY 3.2 Multi-Criteria Decision-Making in Healthcare Waste

The methodology of the research is shown in Figure 3. After screening,
about 58 articles were selected for review. The literature study
emphasizes the significance of the use of Al technologies in hospital
waste management. This allows us to take advantage of enablers and
solve current challenges.

Figure 5. Methodolo

3.1 DataCollection

A thorough literature analysis was conducted to identify the factors
influencing HCWM, and the results revealed 33 important factors—21
challenges and 12 enablers. By removing duplicates and combining
related entries into one category, these characteristics were improved.
A survey was given to healthcare workers, including physicians,
nurses, managers, and support staff, in order to collect data. To
transform qualitative data into quantitative form, the survey used a
Likert scale (1: Not at all relevant, 2: Slightly relevant, 3: Relevant, 4:
Strongly relevant, and 5: Extremely relevant). To guarantee statistical
significance and dependability, a minimum of 107 responses were
gathered. This method produced a solid dataset for additional
examination of the factors found.

Management

HCWM has been using Multi-Criteria Decision-Making (MCDM)
methodologies more and more to handle the industry's complex and
multifarious problems. These methods support decision-making. They
take into account a variety of competing factors. These include cost
influence on the environment and operational efficiency. The
implementation of several MCDM strategies in HCWM is examined in
this review of the literature. A popular MCDM method called
Technique for Order of Preference by Similarity to Ideal Solution
(TOPSIS) assigns a number to each alternative according to how far
away it is from the ideal solution. TOPSIS has been used in numerous
research. It aims to improve HCWM. In this regard, Beheshtinia et al.
(2025) used the Technique for Order of Preference by Similarity to
Ideal Solution (TOPSIS) for prioritizing 24 criteria with 'Operation
cost', 'Occupational hazards of human resources', and ‘The impact of
released substances on health'. Similar to this Parashar et al. (2024)
have used TOPSIS to evaluate the environmental performance of the
medical service supply chain in India, Decision-Making Trial and
Evaluation Laboratory (DEMATEL) aids in locating and examining
causal connections between various criteria. This approach has been
successfully used in HCWM to comprehend relationships between
various components. DEMATEL was utilized by Elangovan et al.
(2025). They investigated the interplay between diverse obstacles and
facilitators in the implementation of Al-driven hospital waste
management systems by shedding light on the main causes and
obstacles. The study helped people make better decisions.

3.2.1 Fuzzy MCDM Methods

Fuzzy logic is used in fuzzy MCDM techniques to address ambiguity
and uncertainty that are part of decision-making. HCWM has seen
considerable benefit from the application of fuzzy TOPSIS and fuzzy
AHP. For instance, Kharat et al. (2016) evaluated the sustainability of
several healthcare waste treatment solutions. They did this in the face
ofuncertainty using fuzzy AHP. Similar to this. Gupta etal. (2023) used
fuzzy TOPSIS to rank waste management plans according to factors
like cost, public health risk and environmental impact.

3.2.2 Integrated MCDM Approaches

To take advantage of the advantages of various approaches, integrated
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approaches that incorporate several MCDM techniques have also been
investigated. Govindan et al. (2013) provided a more comprehensive
framework for decision making. They did this by combining AHP and
TOPSIS to assess and choose the best healthcare waste disposal
technique. Furthermore, to evaluate complicated decision issues with
interdependent criteria, hybrid models combine DEMATEL with other
MCDM techniques. Techniques like ANP (Analytic Network Process)
have been employed.

3.3 Application of the TOPSIS Method for Prioritizing
Challenges

3.3.1 Overview of TOPSIS

The Technique for Order of Preference by Similarity to Ideal Solution
(TOPSIS) is a multi-criteria decision-making (MCDM) method
developed to identify the best option among a set of alternatives. When
decision-makers require a clear preference order, TOPSIS's calculation
of'the relative proximity to the ideal answer yields a clear ranking of the
options. Because TOPSIS is computationally efficient, it can be
applied to situations involving a multitude of

criteria and options. While other MCDM techniques just take into
account the best or worst case, TOPSIS takes into account both,
providing a fairer assessment. It is adaptable to many decision-making
situations since it can handle both quantitative and qualitative criteria.
Itinvolves the following steps:

Step 1: Create a matrix consisting of M alternatives and N criteria. This
matrix is usually called an “evaluation matrix”.

Step 2: Normalize evaluation matrix:
a;j

Zg”:l(aij)z (1)

Step 3: Calculate the weighted normalized decision matrix.
(weight=1/107)

a; =

Xij = aij *w; )

Step 4: Determine the best and the worst alternative for each criterion.

Step 5: Calculate the Euclidean distance between the target alternative
and the best/worst alternative.

“4)

Step 6: Calculate the Performance Score.
dv
Si=—" 5
boav+dl )
Step 7: Rank alternatives according to the TOPSIS score in descending
order.

The ranking of alternatives is shown in Table 3 after the application of
TOPSIS with the inputs from the 5 industry experts.

Table 3. Ranking of Challenges using TOPSIS

Challenge Rank

Lack of Procurement and inventory management

Lack of Supply chain transparency

Lack of Timely waste collection and disposal

Lack of Waste disposal facility coordination

Lack of Clean and green energy adoption

Limited digital skills

Lack of Transport logistics and route optimization

®| 2 o v & W P

Lack of Energy-intensive waste treatment approaches and of energy consumption
monitoring
Lack of scalability of Analytics tools

Lack of data integration

Resistance to change

Safety compliance and Lack of Safety focused technologies 12
Lack of Data accuracy and quality assurance 13
Interoperability with Legacy Systems 14
Initial investment cost 15
Lack of Digital training and awareness 16
Lack of safety documentation 17
Maintenance and repair 18
Workforce redesign 19
Complexities in integration 20
Lack of Data Privacy and Security 21

3.3.2 Application of DEMETAL Method for Prioritizing
Enablers

DEMATEL technique is intended to simulate and assess cause-and-
effect correlations between various aspects in complex systems. It
facilitates the identification of important issues. Efficient
prioritization of them by helping decision-makers visualize the
structure of interdependencies. Interactions among elements. Steps
in Applying DEMETA are as follows:

Step 1: Construct the Direct-Relation Matrix: Collect experts'
opinions to form the direct-relation matrix 4=[a;] where a_ij
represents the influence of factorion factor;.

Step 2: Normalize the Direct-Relation Matrix: Normalize the
direct-relation matrix A using the fogmula:

(1

- max; (X7, aij
where D is the normalized direct-relation matrix.
Step 3: Compute the Total-Recommendation Matrix: Calculate
the total-relation matrix T using:

T=D({-D)* ()

where [ is the identity matrix.

Step 4: Determine Prominence and Relation: Calculate the sum of
rows and columns to determine the prominence (sum of influences
given and received) and relation (difference between influences
givenandreceived): | .
ri=2tij c,=Zt,,- )
j=1 i=1
Prominence: 7; + ¢;

(3)

Relation: 1; — ¢;

Step 5: Cause and Effect Diagram: Plot the r+c; (prominence) on the
horizontal axis and r,-c;(relation) on the vertical axis to form the cause-
and-effect diagram.

Table 4. Ranking of Enablers using DEMETAL

Rank Enabler name Cause/effect
1 Remote monitoring, Real-time tracking and control Cause
2 Ensuring long-term sustainability Effect
3 Data analytics and predictive maintenance Cause
4 10T based sensors and RFID technology adoption Cause
5 Cloud-based platforms Cause
6 Efficient resource allocation Effect
7 Inventory optimization systems Effect
8 Blockchain technology for data security Cause
9 Waste Segregation and Categorization Technologies Effect
10 Compliance monitoring and reporting Effect
11 Waste to energy solutions Effect
12 Emergency response system Effect
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4. RESULTS
4.1 Ranking ofidentified challenges

The TOPSIS analysis identifies a number of significant obstacles to the
adoption of Al-enabled hospital waste management solutions (Table
3). The absence of inventory and procurement management systems is
the biggest obstacle that has been found, highlighting the necessity for
efficient and integrated solutions to expedite these procedures. Lack of
supply chain transparency, which is essential for maintaining real-time
information flow and effective operations, is the second-highest
barrier. Using Blockchain technology, which offers a decentralized and
transparent ledger, can assist in addressing the issue. Effective
coordination between waste disposal facilities and timely collection
and disposal of waste was also noted as a significant challenge. These
challenges demonstrate the need for real-time tracking systems and
Internet of Things-based sensors to improve facility coordination and
garbage collection schedule optimization. Another major barrier is the
lack of acceptance of clean and green energy, which emphasizes the
need for waste-to-energy technology and renewable energy sources to
lessen the environmental impact of waste management. Adoption of
modern technology is further hindered by a lack of transport logistics,
route optimization, and limited digital capabilities. Algorithms for Al-
based route planning and training programs can assist in reducing these
problems. Adopting energy-efficient technology and real-time
monitoring systems is crucial, as evidenced by the absence of energy-
intensive waste treatment methods and energy consumption
monitoring. There is a need for scalable cloud-based platforms and
integrated data management systems that reflect the issues, such as the
inability of analytics tools and data integration to scale. Major
challenges include safety compliance concerns and resistance to
change. It also requires strong leadership. Effective communication is
essential in addressing these concerns.Financial obstacles such as the
expense of initial investment, maintenance, and repairs underscore the
necessity of financing sources. Predictive maintenance programs are
also emphasized. Strategic planning and stakeholder participation are
needed. Address organizational difficulties like workforce redesign.
Integration complications may arise. Finally, the absence of data
security and privacy stresses the crucial need for strong security
procedures. Encryption technologies are essential to safeguarding
private data. In conclusion, a thorough examination of these challenges
suggests that a diverse strategy is needed to get beyond these barriers.
Stakeholder involvement is key. Strategic planning, infrastructural
investment, technical innovation, and ongoing research and
development should all be part of this approach. Economic and long-
lasting solutions may result from successfully addressing these issues.

4.2 Ranking of the identified enablers

The applications of the DEMATEL technique give the ranking as well
as the Cause-and-Effect category of the enablers. Prioritizing enablers
for Al-enabled HCWM systems was accomplished using the
DEMATEL technique (Table 4). The outcomes show which factors are
most important. Facilitating efficient and long-lasting waste
management techniques. Real-time tracking, control, and remote
monitoring are ranked as top enablers. This emphasizes how crucial it
is to have a strong system in place. These systems can monitor waste
management operations continually and make modifications in real
time to ensure efficiency and safety. This offers knowledge about the
advantages of using such techniques to ease the HCWM process.
Another important component emphasized is ensuring sustainability
over the long run. This highlights how important it is to have
procedures and tools that maintain operational and environmental
health. Sustainable practices minimize impact on the environment.
They guarantee adherence. To legal requirements. Both of these are
important for the healthcare industry. The fact that data analytics and
predictive maintenance are ranked second indicates how crucial it is to
use advanced analytics to analyze large volumes of data. This process
helps enhance decision-making and foresee equipment faults.
Predictive maintenance lowers maintenance expenses and decreases
downtime by resolving problems before they become serious. Another
important enabler is the use of RFID technology and loT-based sensors.

These systems enable efficient monitoring and management. Offering
comprehensive real-time data on the types, amount, and place of waste.
This ensures timely waste collection. Additionally, reduces risks
associated with improper disposal. Platforms that are cloud-based
score highly. They are flexible and scalable. These systems facilitate
sharing and processing. Furthermore, they allow the storage of data.
Allowing for thorough analysis as well as efficient operations. They are
essential for combining different data sources. It enhances waste
management systems' effectiveness. Effective resource management
and waste reduction depend on systems for inventory optimization and
efficient resource allocation. By ensuring the best possible use of
resources, these systems reduce expenses. They also improve
operational effectiveness. Waste output in healthcare settings can be
unpredictable. Effective resource management is essential. For data
security, blockchain technology is very important for maintaining data
integrity and privacy. Blockchain ensures regulatory compliance, and
it increases stakeholder trust by offering an immutable, secure record
of transactions. Technologies for waste segregation and classification
make it easier to precisely identify the type of waste. This decreases
contamination and increases treatment effectiveness. By ensuring that
all actions follow regulations, compliance monitoring and reporting
help to lower the risk of non-compliance. This reduces penalties.
Waste-to-energy solutions are emphasized. They produce useful
energy while also decreasing the amount of waste produced. By turning
garbage into a resource, this strategy promotes sustainability. It aligns
with environmental objectives. Last to handle waste management-
related incidents, the emergency response system is essential. Strong
emergency response protocols guarantee prompt resolution of
problems. This reduces hazards to public health and safety. The
DEMATEL review concludes by highlighting the necessity of using
cutting-edge techniques and technologies to improve hospital waste
management's sustainability, security, and efficiency. By addressing
these facilitators, waste management systems can become more
sustainable and efficient while also greatly enhancing operational
performance, regulatory compliance, and environmental impact.

Figure 6. Cause-and Effect diagram
CAUSE & EFFECT DIAGRAM

1

1
ERARLER

The DEMATEL analysis effectively categorized the enablers for Al-
enabled HCWM into cause-and-effect enablers, highlighting their
interdependencies and importance (Figure 6). Further system
advancements are largely driven by these enablers. An efficient waste
management system's foundation is real-time data collecting and
monitoring, which can only be achieved through the widespread use of
RFID technology and Internet of Things-based sensors. Scalable and
adaptable solutions for data processing, sharing, and storage are
provided by cloud-based platforms, enabling thorough analysis and
efficient operations. Overseeing waste management operations and
making quick modifications to ensure efficiency and safety requires
remote monitoring, real-time tracking, and control. By analyzing
enormous volumes of data and foreseeing equipment failures,
predictive maintenance and data analytics improve decision-making
by cutting down on maintenance expenses and downtime. By
guaranteeing data integrity and privacy, blockchain technology for data
security fosters stakeholder trust and assures regulatory compliance.
These are the results that come about when cause enablers are
successfully put into practice. waste-to-energy solutions promote
environmental goals by offering a sustainable way to turn waste into
energy that can be used. Technologies for waste segregation and
classification increase the effectiveness of waste treatment procedures
by lowering contamination and improving disposal techniques.
Systems for optimizing inventory and resource allocation make sure
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resources are used wisely. This reduces expenses and boosts
operational effectiveness. Adopting procedures and technology that
maintain operational and environmental health is necessary. To ensure
sustainability in the long run. An emergency response system is
essential for waste management incidents. They are handled quickly
and effectively while reducing hazards. Compliance monitoring and
reporting help lower the risk of non-compliance and the fines that come
with it. It does this by ensuring all actions follow regulatory standards.

5.  CONCLUSION & LIMITATIONS

This study has been conducted in the Indian HCWM context. The study
follows a systematic methodology of review for identifying the
challenges and enablers for the Al application in HCWM. The study
identified the 21 challenges and 21 enablers that are important for the
application of Al in the Indian HCWM context. The study applied the
two important MCDM techniques for the analysis. However, the
application of the techniques is limited to this level. Further, the study
can be extended to the development of a framework for Al-enabled
HCWM. Also, further empirical investigations can be extended based
on the multiple stakeholders’ evaluations based on the findings of this
study. A further advanced theory development can be undertaken in the
domain of applications of Alin HCWM with a large-scale survey.
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